
Sequential Machine Learning-1

Sequential Machine Learning

Lecturer: Haim Permuter Scribe: Ziv Aharoni

Throughout this lecture we discuss the task of modeling sequential data. This task

comprises on overcoming the fact that training examples are no longer i.i.d. Therefore, we

have to build models that are capable of modeling the time dependencies between samples

in order to model the data optimally in the sense of maximum likelihood. First, we define

the problem mathematically and derive the necessity of Recurrent Neural Network (RNN)

models. Then, we will elaborate on two types of Recurrent Neural Networks (RNNs):

the Elman Network and the Long-Short-Term-Memory (LSTM) cell.

I. INTRODUCTION

Given a training set of n ∈ N examples {(xi, yi)}ni=1 drawn from the joint probability

PXn,Y n , we want to model the generating distribution of the data. In order to do so, we

seek to estimate PXn,Y n with a parametric model Qθ
Xn,Y n , whose parameters are denoted

by θ.

We distinct the sample elements into two groups: (1) the features X , those elements

that we sample freely from the environment, and (2) the labels Y , those elements that

we can not sample from the environment and seek to predict. We now decompose the

joint probability, namely PXn,Y n , using the chain rule of probabilities as follows,

PXn,Y n(xn, yn) =
n∏
i=1

PXi,Yi|Xi−1,Y i−1

(
xi, yi|xi−1, yi−1

)
(1)

=
n∏
i=1

PXi|Xi−1,Y i−1

(
xi|xi−1, yi−1

)
PYi|Xi,Y i−1

(
yi|xi, yi−1

)
. (2)

Generally, want to model only PYi|Xi,Y i−1 since we sample Xn freely from the real

distribution, i.e PXi|Xi−1,Y i−1 . Hence we can model Qθ
Xn,Y n(xn, yn) by

Qθ
Xn,Y n(xn, yn) =

n∏
i=1

PXi|Xi−1,Y i−1

(
xi|xi−1, yi−1

)
Qθ
Yi|Xi,Y i−1

(
yi|xi, yi−1

)
. (3)



Sequential Machine Learning-2

In the rest of the lecture we use this setting, but the derivation could be extended to

estimating the term PXi|Xi−1,Y i−1 (xi|xi−1, yi−1) as well.

Now, we find the model parameters θ by the maximum likelihood estimator which is

given by

θ̂ML = argmax
θ

{
logQθ

Xn,Y n (xn, yn)
}

(4)

= argmax
θ

{
log

n∏
i=1

PXi|Xi−1,Y i−1

(
xi|xi−1, yi−1

)
Qθ
Yi|Xi,Y i−1

(
yi|xi, yi−1

)}
(5)

= argmax
θ

{
n∑
i=1

logQθ
Yi|Xi,Y i−1

(
yi|xi, yi−1

)}
(6)

If the samples were sampled i.i.d the term Qθ
Yi|Xi,Y i−1 (yi|xi, yi−1) would collapse to

Qθ
Yi|Xi

(yi|xi), which is feasible to approximate with a parametric model. Unfortunately,

when modeling Qθ
Yi|Xi,Y i−1 (yi|xi, yi−1), there are two major difficulties with the modeling

task: (1) the model needs more parameters to combine the features from past times, and

(2) the function Qθ
Yi|Xi,Y i−1 varies (even in the number of arguments) as i changes.

For example, if we use a logistic model, in the i.i.d case, if x ∈ Rd, y ∈ R, we

can parameterize Qθ
Yi|Xi

(yi|xi) the model with d + 1 parameters. However, in the time

dependent case, if we want to model Qθ
Yi|Xi,Y i−1 we would need di + d(i − 1) + 1

parameters.

These problems encourage us to make assumptions on the distribution that generated

the data, that eventually lead us to build feasible models which are capable on

encapsulating time dependencies. In the next section we develop a model with shared

weights by approximating the underlying distribution of the data as Markov process.

II. STATIONARY MARKOV PROCESS MODELING

In order to deal with the parameterization problem, we approximate the process that

generated Xn, Y n as a stationary Markov process.



Sequential Machine Learning-3

Let us assume that there exists a R.V Si , f(X i−1, Y i−1), for some deterministic func-

tion f (·), that summarizes the history of inputs and labels, such that, PXi,Yi|Xi−1,Y i−1 =

PXi,Yi|Si
. That is, we assume that the following Markov chain holds,

(S1, X1, Y1)− (S2, X2, Y2)− · · · − (Sn, Xn, Yn) . (7)

Next, we assume stationarity of this Markov chain, that is,

P (Xi = x, Yi = y, Si = s) = P (Xj = x, Yj = y, Sj = s) i 6= j, (8)

where (x, y, s) ∈ X ×Y × S , the alphabet of inputs, targets and states respectively. The

last assumption is that this stationary Markov chain is Ergodic, which basically means that

we could recover the stationary distribution of the Markov chain by sampling observation

of the data.

Under the three preceding assumptions, and by the law of large numbers, the

optimization criteria in (6) becomes

n∑
i=1

logQθ
Yi|Xi,Y i−1

(
yi|xi, yi−1

)
= (9)

n∑
i=1

logQθ
Yi|Xi,Si−1

(yi|xi, si−1)
n→∞−−−→ (10)

EPY |X,S

[
Qθ
Y |X,S (Y |X,S)

]
= (11)

H
(
PY |X,S

)
+DKL

(
PY |X,S‖Qθ

Y |X,S
)

(12)

Using this approximation, we can build a feasible model that would be able to encapsulate

time dependencies in the data.

III. RECURRENT NEURAL NETWORK (RNN)

In this section we show the equations of the Elman (vanilla) RNN. Then, we delve into

the error propagation analysis of the Elman RNN and explain the vanishing/exploding

gradient phenomena, which will motivate us finally derive the architecture of the Long-

Short-Memory-Term (LSTM) cell.



Sequential Machine Learning-4

A. Elman Network

1) Description: The Elman network uses the Markov settings from the preceding

section. That is, the Elman networks generates a state S that summarizes the history and

is used to generate along with the input X the prediction for Y and the next state S ′.

Fig. 1. Depiction of single-layered Elman network and its time unrolling representation

We introduce the equation of a single layered Elman network, as depicted in Figure 1,

for simplicity, even though that the generalization for multi-layered network (or stacked

Elman network) is direct. The equations of the Elman network are given by

zt = Wxxt +Whht−1 + bx (13)

ht = σ (zt) (14)

zyt = Wyht + by (15)

yt = σ (zyt ) (16)

where xt ∈ Rd, bx, zt, ht ∈ Rm,Wx ∈ Rm×d,Wh ∈ Rm×m,Wy ∈ R1×m, zy, yt, by ∈ R and

hl0 = 0. Here the state at time step t is denoted by ht, the input at time t is denoted by

xt, and the σ(·) denote a element-wise non-linearity function. For our analysis we use

the sigmoid, σ(x) = 1
1+e−x .

2) Error Propagation Analysis: Let us denote the error signal by

εt = dt − yt, (17)



Sequential Machine Learning-5

where dt denotes the true label and the term yt denotes the model prediction. For

computational simplicity we assume that the target is a scalar. The goal is to minimize

the MSE loss, namely J(θ) which is given by

J(θ) =
T∑
t=1

Jt(θ) (18)

=
T∑
t=1

1

2
ε2t (19)

We would like to adjust the network weights by propagating the error back in time.

Let us calculate the error signal as it propagates backwards in the network. The error

propagated to the network output is denoted by δyt ∈ R1×ny and is given by

δyt ,
∂

∂zyt
Jt(θ) (20)

=
∂

∂zyt

1

2
(dt − yt)2 (21)

=
∂

∂yt

1

2
(dt − yt)2

∂yt
∂zyt

(22)

= (dt − yt)σ′ (zyt )
T (23)

where

σ′ (zyt ) =
[
σ′(zyt 1), σ

′(zyt 2), . . . , σ
′(zyt ny

)
]T
. (24)

The error that is propagated to the RNN state is denoted by δt ∈ R1×m and is given by

δt ,
∂

∂zt
Jt(θ)

=
∂

∂zyt
Jt(θ)

∂zyt
∂zt

= δyt
∂

∂zt
(Wyht + by)

= δytWydiag (σ′ (zt)) (25)

Next, we can calculate the error propagated backwards in time inside the network by

δt−1 ∈ R1×nL and δt ∈ R1×n respectively. The time propagated error is given by

δt−1 ,
∂

∂zt−1
Jt(θ) (26)



Sequential Machine Learning-6

= δt
∂zt
∂zt−1

(27)

= δt
∂

∂zt−1
(Wxxt +Whht−1 + bx) (28)

= δtWhdiag (σ′ (zt−1)) , (29)

Now, we calculate the error that is propagated k time steps backwards in time. We will

get that

δt−k = etσ
′ (zyt )

T Wydiag (σ′ (zt))Whdiag (σ′ (zt−1)) · · ·Whdiag (σ′ (zt−k)) (30)

Let us examine the norm of the error as it propagates backwards in time. Since that σ′

is bounded, say by M > 0, and assume that Wh has maximal eigen value of λ we can

claim that

‖δt−k‖ ≤ |et|
∥∥M1TWy

∥∥ ‖MλI‖ · · · ‖MλI‖ (31)

= |et|
∣∣∣(λM)2k

∣∣∣ ∥∥M21TWy

∥∥ (32)

We can see that if |λM | > 1.0 the error explodes as we keep propagating the error

back in time, and if |λM | < 1.0 the error vanishes in time. The naive approach is to

set λM = 1 but this does not work in practice since it causes saturated units that drives

the activation to zero. This property of the Elman network is the main motivation for

the LSTM cell, which addresses the vanishing/exploding gradient problem by enforcing

constant error propagation in time.

B. Long Short-Term Memory (LSTM)

1) Motivation - Constant Error Flow: For simplicity, let us examine the naive elman

RNN with a single unit. In that case, the propagated error from time t to time t − 1 is

given by

δt−1 = δt
∂zt
∂zt−1

(33)

= δt
∂

∂zt−1
(wxxt + whht−1 + b) (34)

= δtwhf
′ (zt−1) . (35)



Sequential Machine Learning-7

In order to achieve constant error flow we demand that the activation function will satisfy

whf
′ (zt−1) = 1. (36)

By solving the differential equation we get that f(z) = z
wl

h
, i.e the activation function

must be linear. So by setting f to be the identity mapping and wh = 1 we can ensure a

constant error flow, namely Constant Error Carousel (CEC). However a unit is connected

to other units except itself that introduce two conflicts.

1) Input weight conflict: Excitation of input units enter the state by a linear projection

and can contaminate the state if the input is not correlated with the targets.

2) Output weight conflict: State units are used to predict the target by a linear

transformation. Nevertheless, at different time steps different units are correlated

with the target. Hence, a linear transformation of the states essentially uses

uncorrelated units to predict the target.

These conflicts, and the conclusion that linear activation can enforce constant error flow

motivates us for the architecture of the LSTM cell.

Fig. 2. Depiction of the LSTM cell architecture

2) The Original Model: The architecture of the LSTM is depicted in Figure 2, an its

equations are given by

at = tanh (Uaxt +Waht−1 + ba) (37)



Sequential Machine Learning-8

it = σ (Uixt +Wiht−1 + bi) (38)

ot = σ (Uoxt +Woht−1 + bo) (39)

ct = at � it + ct−1 (40)

ht = ot � tanh (ct) (41)

These equations were modified to the last common LSTM architecture by adding a

”forget” gate that can forget certain cell units when propagating the error through time.

3) The Current Model: The LSTM equations are given by

at = tanh (Uaxt +Waht−1 + ba) (42)

it = σ (Uixt +Wiht−1 + bi) (43)

ft = σ (Ufxt +Wfht−1 + bf ) (44)

ot = σ (Uoxt +Woht−1 + bo) (45)

ct = at � it + ft � ct−1 (46)

ht = ot � tanh (ct) (47)

This structure enables constant gradient flow through time by removing the non-linear

activation from the memory update as depicted in figure 3, namely cttre of the LSTM

cell enab

Fig. 3. Depiction of gradient flow in time of the LSTM cell.


	Introduction
	Stationary Markov Process Modeling
	Recurrent Neural Network (RNN)
	Elman Network
	Description
	Error Propagation Analysis

	Long Short-Term Memory (LSTM)
	Motivation - Constant Error Flow
	The Original Model
	The Current Model



